

Faculty of Computer Science Institute of Software and Multimedia Technology, Chair of Multimedia Technology

CapView – Functionality-Aware Visual Mashup Development for Non-programmers

Carsten Radeck, Gregor Blichmann, Klaus Meißner

Talk outline

- 01 Problem Statement
- 02 Conceptual Foundation
- 03 CapView
- 04 Evaluation
- 05 Conclusion & Future Work

01 Problem Statement

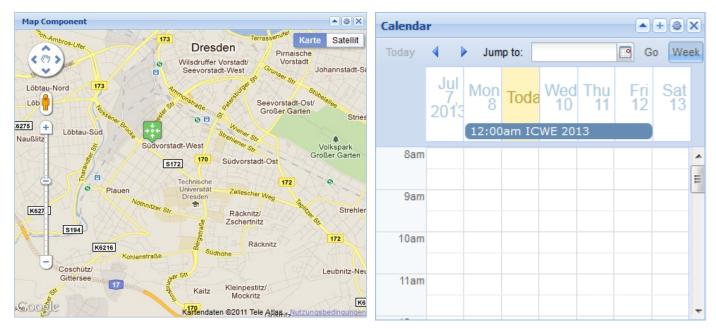
End user development (EUD) gains momentum to fulfill long tail user needs

Mashups as potential solution, but

- still very technical metaphors, terms
- distinction development time ↔ run time
- ...

Non-programmers as target group:

- limited understanding of technical concepts
- no experience on development practices



[P1]

- → It is hard for the user to map his/her problem to a composition
 - → How to understand what happens in a mashup?

01 Problem Statement

01 Problem Statement

General challenges for EUD tools [6]

- abstraction of technical details & terminology
- automation, short feedback loops
- user guidance

Challenge we address

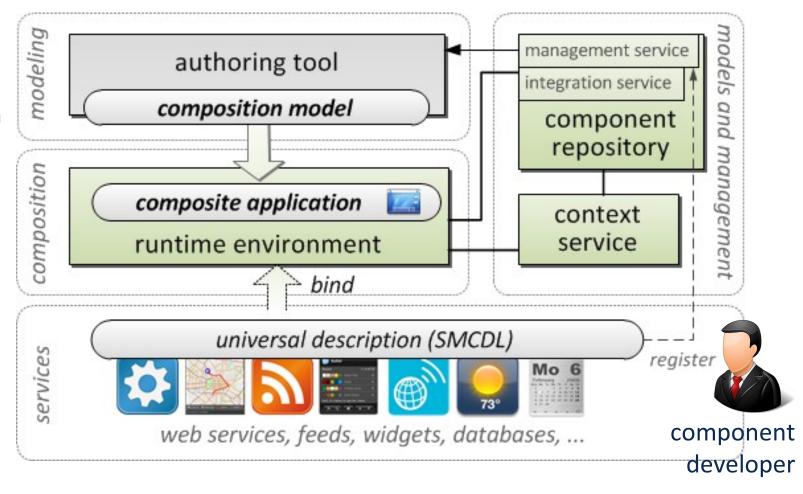
- appropriate level of abstraction
 - to clarify functionality mashup (parts) and recommendations provide
 - for composing on a task/activity-level

[P2]

→ CapView

- helps to realize "components" as task-solving entities,
- investigate functionalities provided by a mashup,
- manipulate a mashup by visually composing functionalities

02 Conceptual Foundation

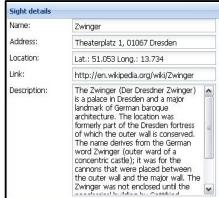

End User Development for Mashups: EDYRA [4]

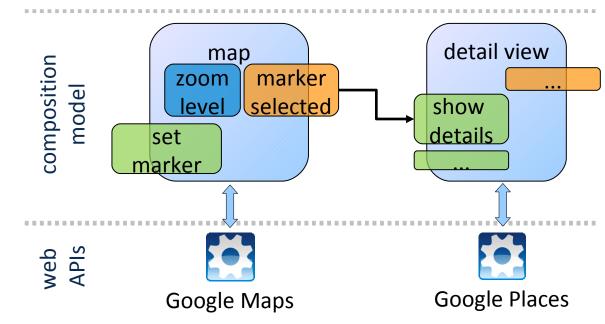
application developer

domain
expert =

02 Conceptual Foundation

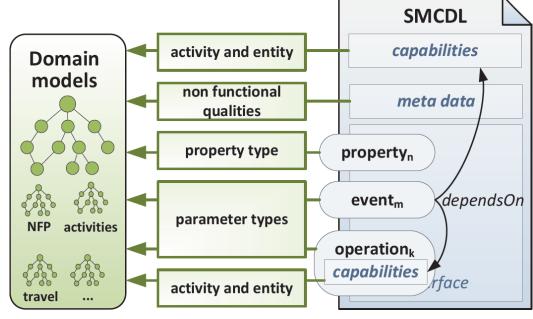
Component Model


- uniform black-box view
- parametrized operations and events, properties
- semantic component description (SMCDL [3])

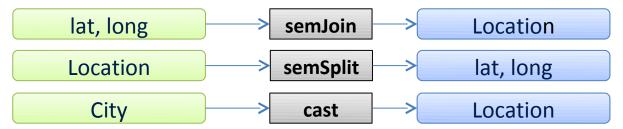

Composition Model

- covers application aspects
 - included components,
 - communication,
 - layout, navigation,...

final mashup



02 Conceptual Foundation


Capabilities

- for functional semantics of interface elements
- (activity, entity, requiresInteraction)
- e.g. Display Location

Mediation Techniques extending [3]

- resolve data heterogeneity
- reflect knowledge of referenced ontologies, e.g.:

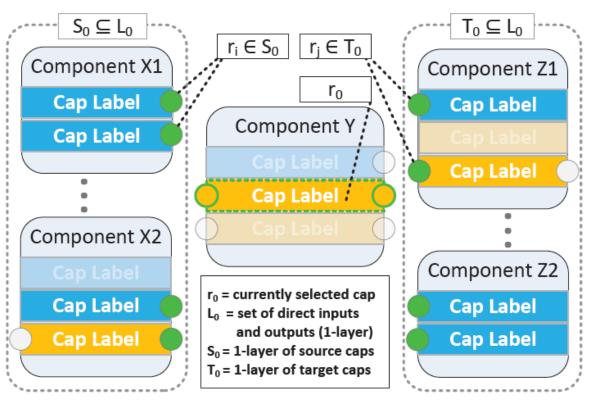
03 CapView – Overview

Assumption

- components serve to solve tasks
 - need input, provide output

A view that overlays a running application

- representations of capabilities and properties are visualized
 - labels
 - ports for connecting
- spatial correlation
- recommendations


03 CapView – Exploration

Color coding

- properties: uniform
- capabilities: depending on requiresInteration

Formal definitions

- r_0 active selection
- L_o all r connectable with r_o
- $S_0 \subseteq L_0$ and $T_0 \subseteq L_0$

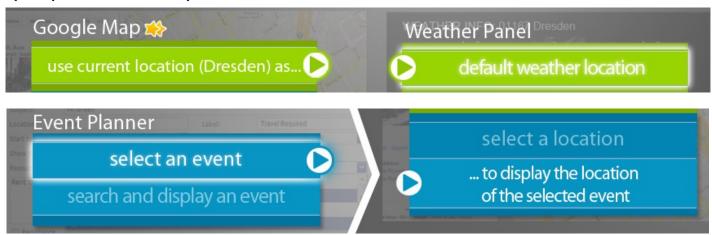
Upon user selection

- highlighting and re-labeling all r in L₀
- direct and transitive connections are highlighted

03 CapView - Context-sensitive Label Generation

Generic rule set for deriving labels based on annotations

- used by label generator
- in case nothing is selected:
 - property: concept name extracted from the URI or rdfs:label and instance data if set
 - capability: short phrase combing activity and entity, concept name extracted from the URI or rdfs:label



03 CapView – Context-sensitive Label Generation

Details on rules when active user selection

- label of r_0 not changed
- clarify cause and effect → build phrases
 - prepend or append dots
 - treat r_i in T_o and r_i in S_o differently
- rules differ slightly depending on whether involved *r* represent properties or capabilities

03 CapView - Context-sensitive Label Generation

Details on rules when active user selection

special rules take semantic relation of entities and parameters into account

SplitRule

target parameter type is subsumed by source parameter type
 select event display location
 select event → ... to display the location of the selected event

CompRule

- if entity and parameter of capability are mediable → shorten

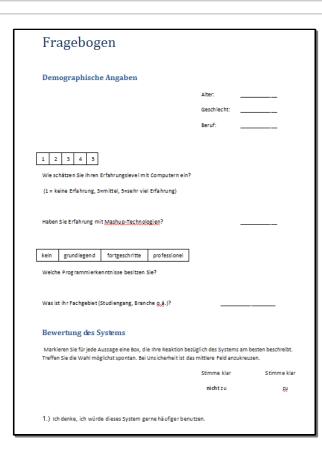
SuffixRule

- If there are multiple possible parameter mappings → options center search route (startLocation, destLocation)
 center → search a route using the center as start | as dest.
- combinations possible

03 CapView - Reconfiguration

Establishing connections

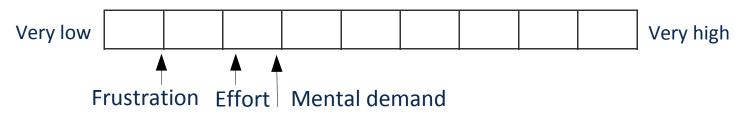
- requires active selection
- in case of multiple parameters and/or multiple possible mappings: choose options


- connections can be created from source to target and vice versa
- via drag & drop or clicking the target port
- runtime environment implements all composition model details

04 Evaluation – User Study – Methodology

Setup

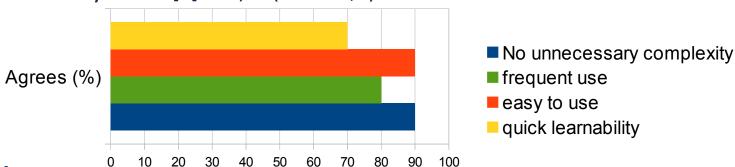
- preliminary prototype
- 10 students from fields in the age of 22 37
- questionnaire (demographic data and skills)
 - no or very basic knowledge about mashups
 - frequently use web applications
 - 5 users described their programming skills as "average"
- introduction by interviewer
- think aloud protocol
- after completion: assess perceived task load and system usability


04 Evaluation – User Study – Results

Positive points

- all participants were able to solve the tasks
- w key concepts perceived positive
 - functional abstraction
 - spatial correlation
 - highlighting
 - natural language labels & context-sensitive relabeling
- Iabels sufficiently intuitive (70%)
- both directions used for connection creation

Task Load Index:


11.07.2013

04 Evaluation – User Study – Results

Neutral assessment

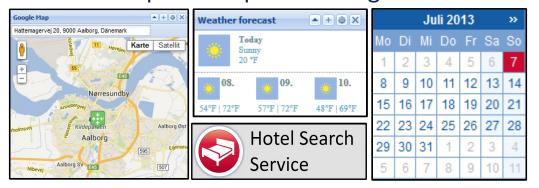
color coding minor role

Problems

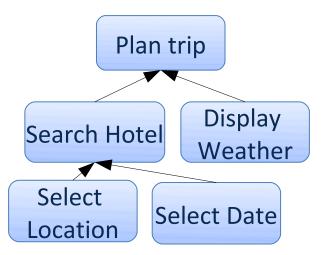
expectations on component functionality highly influenced by experience

05 Conclusions & future work

Proposal: CapView


- View on a mashup under development/usage
 - emphasizing capabilities
 - abstracting composition details
 - generating and adapting natural language labels
 - forming sentences to explain functional interplay
 - seamlessly integrating recommendations
- evaluation by means of prototypical implementation, and user study

05 Conclusions & future work


Current and Future Research Focus

- stronger interweaving CapView and LiveView
- intuitive way for users to express their goal
- derive capabilities and their relationships from complex composition fragment

conduct a comparative user study

Thank you for your attention!

Questions?

Carsten Radeck carsten.radeck@tu-dresden.de Skype: c.radeck

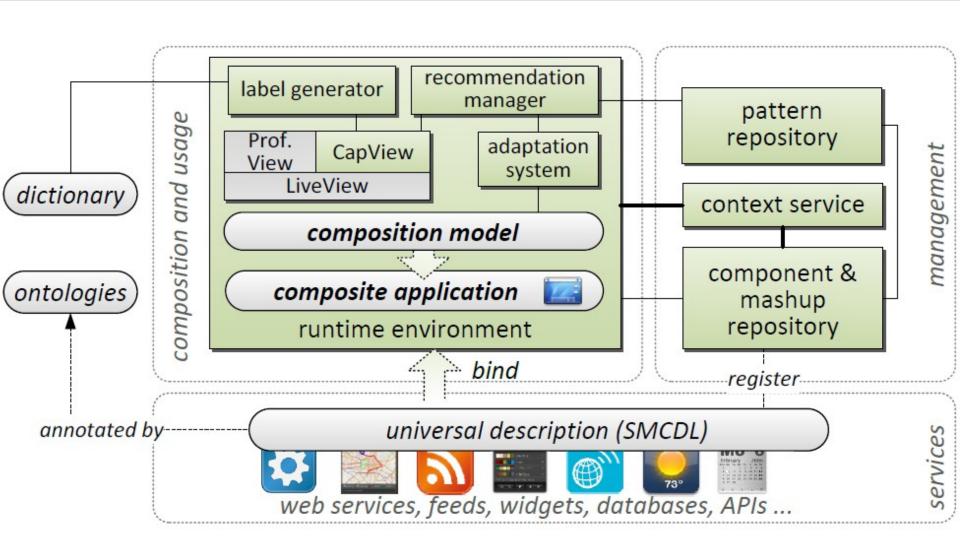
Funding for the EDYRA project is provided by the Free State of Saxony and the European Union within The European Social Funds program (ESF-080951805).

Appendix – User Study – Methodology

Tasks to be solved (in travel planning domain)

Scenario 1

 basic understanding of the exploration and interaction mechanisms


Scenario 2

 creating and reconfiguring connections using parameter mappings

Appendix – CapView – Architecture

References

- [1] Carsten Radeck, Alexander Lorz, Gregor Blichmann, and Klaus Meißner:

 Hybrid Recommendation of Composition Knowledge for End User Development of Mashups
 In Proc. of the 7th Intl. Conf. on Internet and Web Applications and Services (ICIW 2012), 2012.
- [2] Stefan Pietschmann: A Model-Driven Development Process and Runtime Platform for Adaptive Composite Web Applications. In International Journal On Advances in Internet Technology (IntTech), vol. 4, no. 2, 2009 (published March 2010).
- [3] Stefan Pietschmann, Carsten Radeck, and Klaus Meißner: Semantics-Based Discovery, Selection and Mediation for Presentation-Oriented Mashups, In Proceedings of the 5th International Workshop on Web APIs and Service Mashups (Mashups 2011), ACM, September 2011
- [4] Andreas Rümpel, Carsten Radeck, Gregor Blichmann, Alexander Lorz, Klaus Meißner: Towards Do-It-Yourself Development of Composite Web Applications,
 In Proc. of the International Conference on Internet Technologies & Society 2011, 2011
- [5] Brooke, J.: SUS: a "quick and dirty" usability scale, In Usability Evaluation in Industry, 1986
- [6] Abdallah Namoun, Tobias Nestler, and Antonella De Angeli: Service Composition for Non-programmers: Prospects, Problems, and Design Recommendations,

 In Proceedings of the 8th European Conference on Web Services, Cyprus, pp. 123–130, 2010
- [P1] http://www.photocase.de/stock-fotos/226003-stock-photo-mensch-mann-pflanze-spielen-garten-kopf.jpg
- [P2] http://www.photocase.de/foto/213685-stock-photo-mann-computer-hand-jugendliche-arbeit-erwerbstaetigkeit-gefuehle