
TOWARDS DO-IT-YOURSELF DEVELOPMENT OF COM-

POSITE WEB APPLICATIONS

Andreas Rümpel, Carsten Radeck, Gregor Blichmann, Alexander Lorz, and Klaus Meißner
Technische Universität Dresden, Germany

{andreas.ruempel,carsten.radeck,gregor.blichmann,alexander.lorz,klaus.meissner}@tu-dresden.de

ABSTRACT

Different tools and platforms support mashing up web-based resources to build applications by utilising development

techniques suitable for end users. Those approaches are often based on simple predefined building parts and either con-

strain application complexity or require detailed knowledge of data types and communication paradigms. This paper

proposes a novel approach of semantically connecting mashup components at an end user abstraction level. To provide

immediate feedback and instant payoff from development effort, mashup development, usage, and reconfiguration tasks

are seamlessly interwoven.

KEYWORDS

Mashup platforms, End user development, Situational composition, Web-based services, Semantic recommendation

1. INTRODUCTION AND MOTIVATION

Mashups empower users to meet their situational needs by composing a steadily increasing number of open,

reusable, and distributed web services and APIs. While initially focused on aggregation of data and logic,

recent approaches adhere to universal composition (Daniel et al. 2009, Pietschmann 2010). Thereby, compo-

nents of all application layers, including the UI, are uniformly described and integrated. We apply this idea,

resulting in component-based and presentation-oriented mashups, called composite web applications.
Current mashup platforms ease the composition process through graphical modelling and different ab-

straction levels. However, there are still shortcomings especially with regards to end user development

(EUD). Advanced understanding of technical concepts, like details about data structures, is necessary. Whilst

there are numerous reasons that cause current EUD for mashups to fall short of expectations, two prominent

ones should be emphasised: First, there is insufficient immediate payoff from the development effort in terms

of time or cost savings. Second, the complexity of real-world problem domains exceeds the problem analysis

and modelling capabilities of average end users.
Based on the identified shortcomings of current mashup platforms supporting EUD, this paper proposes

key features of a situational mashup development process suitable for domain experts and experienced web

users without requiring deep technological knowledge. A central issue of the EUD process in our research

project Engineering of Do-it-Yourself Rich Internet Applications (EDYRA) is the semantic description of

mashup components and their communication interfaces, facilitating a recommendation process at a user-

adequate level.
The remaining paper is structured as follows. Section 2 outlines the state of the art concerning EUD in the

area of web service composition and in the context of mashups. Next, in Section 3 we propose the EDYRA

vision for a semantically guided development of composite web applications. Finally, Section 4 concludes

this paper and outlines work in progress.

2. END USER DEVELOPMENT FOR SERVICE-BASED APPLICATIONS

Service composition and mashup environments ease the development of composite web applications in com-

parison to traditional methods. Factors for enabling the end user building his own powerful applications and

the technological prerequisites have been outlined in (Lorz et al. 2011). This section provides a brief over-

view of related EUD approaches in web service composition and its support in existing mashup development

platforms.

2.1 End User Web Service Composition

In the area of web services, several approaches aim to simplify the composition task in comparison to classi-

cal languages like BPEL and, thus, enable non-programmers to create composite applications. In ServFace

(Feldmann et al. 2009), composition takes place at the presentation layer utilising generated Service

Frontends. While EDYRA focuses on rich internet applications, ServFace is restricted to simple form-based

user interfaces. Major drawbacks are the limitation to SOAP web services and the lack of adaptivity.
A template-based guidance approach is proposed in SOA4All (Mehandjiev et al. 2010). Predefined tem-

plates for different tasks are instantiated with concrete web services at runtime, based on semantic technolo-

gies. Compatible web services for each slot are automatically determined and presented to the end user. Since

this procedure is rather restrictive, we strive for a more flexible solution.

2.2 Mashup Platforms with EUD Support

Several scientific approaches focus on EUD of composite web applications and are discussed in this section.

Similar to EDYRA, DashMash (Cappiello et al. 2011) strives for an interwoven design and execution envi-

ronment. Based on a categorisation, e.g., in viewer, filter and data sources, recommended components can be

added via drag and drop to the current composition. Recommendations rely on different quality aspects re-

garding, e.g., syntactic and semantic compatibility of inputs and outputs. Thus, it is possible to wire compo-

nents automatically. For customising the wiring between components, the user has to manually combine

inputs and outputs. Recommending components does not regard information extracted from performed tasks

or previously created compositions by the user or the community. Intelligent layout generation is not suffi-

ciently addressed at the moment, but in our opinion, it is crucial for providing a convenient development

experience for end users.
With EzWeb (Lizcano et al. 2008), mashups can be built by end users at runtime through a combination of

gadgets via wiring in a dedicated connector view. Gadgets created by gadget developers provide a screen-

flow-based presentation layer for different encapsulated third-party web resources. One major drawback is

the lack of recommendations for suitable components. Additionally, inserted components have to be wired

manually by the end user through linking outputs and inputs via channels. In general, wiring is only based on

data types, corresponding functionalities are not taken into account. Collaborative development and adaptiv-

ity are currently not addressed, neither by DashMash, nor by EzWeb.

WIRE applies the idea of wisdom-aware computing, i.e., providing recommendations by leveraging exist-

ing compositions and thus the wisdom of the crowd (Chowdhury et al. 2010). Composition knowledge is

provided as Advices including Patterns and Triggers stating the condition under which the advice triggers,

and depends on the considered composition metamodel. In contrast to the aforementioned approaches, WIRE

does not rely on explicit semantic annotations but rather on implicit semantics gathered by different mining

techniques and statistical data analysis. We will investigate the applicability in our (more complex) meta

model, since the basic idea of reusing composition knowledge of experienced users is desirable. However, we

argue that there is a need for semantics especially when it comes to context-aware composition, since con-

crete components may not be suitable in the end user’s context, for instance, with respect to the device.

With an increasing number of available web-based resources and web users, EUD gains momentum espe-

cially in composing web mashups. Although the presented approaches already abstract from programming

tasks, there is still technical knowledge required to successfully create composite web applications.

3. EDYRA: SEMANTICALLY GUIDED MASHUP DEVELOPMENT

In this section, key ingredients and basic principles of our envisioned mashup development process and plat-

form are introduced. They incorporate essential requirements for EUD tools as pointed out in the literature,

e.g., (Namoun et al. 2010, Cappiello et al. 2011).
EDYRA is based on the results of the CRUISe project (Pietschmann 2010), which enables universal

composition of heterogeneous web resources encapsulated as black-box components in a service-oriented

fashion. Component interfaces are specified in a WSDL-like way using the Mashup Component Description

Language (MCDL) comprising operations, events, and properties. A composition model acts as a platform

independent description of all mashup aspects, like the layout and the publish-subscribe communication of

components. Based upon those models, EDYRA extends the CRUISe infrastructure and development process

by means required for EUD (cf. Figure 1). In general, our vision of building applications at runtime empha-

sises the selection and reuse of prefabricated components or entire compositions instead of specifying from

zero.

Figure 1: Overview of the envisioned architecture

In contrast to professional software engineers, end users implicitly and iteratively conduct design in the

small (Cao et al. 2010). Thereby, they usually reflect on the consequences of their actions which is impeded

by a sharp distinction between design and run time. Additionally, as shown by (Namoun et al. 2010), end

users have difficulties to distinguish between these two perspectives. This underpins the necessity to stronger

interweave both. Following the WYSIWYG principle and the approaches presented by DashMash and Ez-

Web, we thus strive for the development of the application during runtime, where automatically recom-

mended, integrated, and coupled components can be used immediately (cf. lower middle part of the platform

in Figure 1). We call this process live sophistication of composite web applications. Automating develop-

ment steps results in a reduced learning effort, which is an important requirement for successful EUD. To

support varying end user skills, we suggest the provision of adequate views, differently abstracting the

necessary end user’s knowledge of composition logic and component interface details: non-technically

skilled end users are supported by high automation, requiring user intervention only in case of ambiguities,

while an advanced user can manipulate, for instance, the wiring similar to EzWeb. Since this choice is explic-

itly made by the user at the moment, we aim at a higher degree of automatisation.

To enable recommendation and composition at runtime, the semantic description of components includ-

ing their communication interface is absolutely necessary. Therefore, as shown in the left part of Figure 1, we

leverage light-weight semantic annotations as proposed in (Pietschmann et al. 2011). In contrast to EzWeb,

besides data semantics in terms of concepts in domain ontologies, we additionally focus on non-functional

semantics and functional semantics. This includes functionality of the overall component, operations, and

events by means of capabilities as well as pricing and quality of service. Capabilities comprise actions per-

formed by users or components themselves on certain domain objects. Actions and affected object are for-

malized as ontology concepts, too. For instance, <action=Search, domain object=Route, provid-

er=Component> represents a component’s capability to deliver public transportation routes. The necessary

input parameters are part of the corresponding operation’s data semantics, and thus may differ from the do-

main object. Building up on this, we propose automated wiring of components and mediation of different

data structures in line with a composition model kept synchronised with the application. As an example, if a

user is creating an appointment via a calendar component, the platform recommends suitable activities, e.g.,

to integrate an additional component for inviting people from his address book.

To retrieve and recommend components best fitting the user’s requirements and context, matchmaking

approaches, e.g., based on subsumption of data, functional, and non-functional semantic annotations, will be

applied. Therefore, we currently utilise a context-aware, template-based technique (Pietschmann et al. 2011)

to query alternative components from the component repository and to determine possible follow up compo-

nents by deriving templates from unbound operations or events of components being already present in the

mashup. Unlike DashMash, one of our next steps is to study a combination with recommendations taking

previously defined composition models from similar users into consideration.
A major challenge during live sophistication is intelligent automatic layout generation. In this context,

several issues need to be resolved. It is necessary to figure out, which components shall be displayed in paral-

lel, which components should be displayed close to each other, displaced, relocated, or minimised, when

adding new components. Further, layout generation will consider context data managed by the context ser-

vice like a user’s preferences, abilities, tasks, and usage characteristics, as well as device properties. Such

context information will also be employed to provide context-aware mashups. We therefore investigate the

transfer of means for context and adaptation management as proposed earlier (Pietschmann et al. 2011b) to

our platform as indicated on the right hand side of Figure 1.

Particular challenges arise from the universal composition approach, since, besides the rather trivial visu-

alisation of UI components, also components without a UI have to be represented adequately. Therefore, we

propose to offer a view, where all currently integrated non-UI components are displayed. Adequate user

guidance in case of presenting recommendations will be provided in a structured and visually optimized way.

Besides utilising text-based search, the user can either choose between commonly used components or com-

ponents matching the current composition and context. These are ranked by personal preferences and com-

munity-based suggestions.

4. CONCLUSION AND WORK IN PROGRESS

The hurdles for low-skilled users to create or reconfigure their own composite web applications are still high.

Early approaches tried to hide composition complexity by providing simple pre-manufactured building

blocks selectable out of a very small pool. The resulting insufficient overall complexity of final composite

applications provides an excellent foundation for the involvement of semantic description of mashup compo-

nents and their communication interfaces. In this early phase of our research project EDYRA, we propose a

mashup development process and platform by breaking those semantic associations down to a level suitable

for the defined target group.
To figure out which results the EDYRA platform and development process can offer within different ap-

plication domains, we are implementing several evaluation scenarios. To this end, we have developed suita-

ble mashup components and annotated their purpose and communication interfaces semantically. We plan to

formalise the task hierarchy, corresponding to those mashup components, via an implicitly generated seman-

tic task model, cf. (Tietz et al. 2011). Example domains include social travel planning and smart office. In

addition to proof of concept prototypes, we plan to conduct user studies in order to show our approach’s

feasibility and suitability. Furthermore, future work includes the support of asynchronous and synchronous

multi user collaboration based on a uniform semantic data layer.

ACKNOWLEDGMENT

Funding for the EDYRA project is provided by the Free State of Saxony and the European Union within the

European Social Funds program (ESF-080951805).

REFERENCES

Cao, J. et al., 2010. End-user mashup programming: through the design lens. Proceedings of the 28th International Con-

ference on Human Factors in Computing Systems, Atlanta, USA, pp. 1009–1018.
Cappiello, C. et al., 2011. Enabling End User Development through Mashups: Requirements, Abstractions and Innova-

tion Toolkits. Proceedings of the Third International Symposium on End-User Development (IS-EUD), Torre Canne,

Italy, pp. 9–24.

Chowdhury S. R. et al., 2010. Wisdom-Aware Computing: On the Interactive Recommendation of Composition

Knowledge. Proceedings of the 6th Workshop on Engineering Service-Oriented Applications (WESOA).

Daniel, F. et al., 2009. Hosted Universal Composition: Models, Languages and Infrastructure in mashArt. Proceedings of

 the 28th International Conference on Conceptual Modeling, Gramado, Brazil, pp. 428–443.

Feldmann, M. et al., 2009. Overview of an End User enabled Model-driven Development Approach for Interactive Ap-

plications based on Annotated Services. Proceedings of the 4th Workshop on Emerging Web Services Technology,

Eindhoven, The Netherlands, pp. 19–28.
Lizcano, D. et al., 2008. EzWeb/FAST: reporting on a successful mashup-based solution for developing and deploying

composite applications in the upcoming web of services. Proceedings of the 10th International Conference on Infor-

mation Integration and Web-based Applications & Services, Linz, Austria, pp. 15–24.

Lorz et al., 2011. Introducing the EDYRA Vision: Engineering of Do-It-Yourself Rich Internet Applications. Proceed-

ings of the International Conference on Internet Technologies & Society (ITS 2011), Shanghai, China.
Mehandjiev, N. et al., 2010. Assisted Service Composition for End Users. Proceedings of the 8th European Conference

on Web Services, Ayia Napa, Cyprus, pp. 131–138.
Namoun et al., 2010. Conceptual and Usability Issues in the Composable Web of Software Services. Proceedings of

ICWE Workshops, 2nd International Workshop on Lightweight Integration on the Web, Vienna, Austria, pp. 396–

407.
Namoun, A. et al., 2010. Service Composition for Non-programmers: Prospects, Problems, and Design Recommenda-

tions. Proceedings of the 8th European Conference on Web Services, Ayia Napa, Cyprus, pp. 123–130.
Pietschmann, S., 2010. A Model-Driven Development Process and Runtime Platform for Adaptive Composite Web

Applications. International Journal on Advances in Internet Technology, Vol. 4, No. 2, pp. 277–288.

Pietschmann, S., Radeck, C., Meißner, K., 2011. Semantics-Based Discovery, Selection and Mediation for Presentation-

Oriented Mashups. Proceedings of the 5th International Workshop on Web APIs and Service Mashups (Mashups

2011), Lugano, Switzerland.

Pietschmann, S., Radeck, C., Meißner, K., 2011. Facilitating Context-Awareness in Composite Mashup Applications,

Proceedings of the 3rd International Conference on Adaptive and Self-Adaptive Systems and Applications (ADAP-

TIVE 2011), Rome, Italy.

Tietz, V., 2011. Towards Task-Based Development of Enterprise Mashups. Proceedings of the 13th International Con-

ference on Information Integration and Web-based Applications & Services (iiWAS2011), Ho Chi Minh City, Vi-

etnam.

